Implications of Changing Hydrologic Statistics for Water Management

Jayantha Obeysekera, Ph.D., P.E. ('Obey')

Chief Modeler

27th Annual Southwest Florida Water Resources Conference February 2, 2018

Outline

Water Management: Stationarity versus Nonstationarity (changing statistics!)

 Projected Changes in Temperature, Precipitation, and Sea Level Rise

Potential Impacts

Adaptation

Impacts of Changing Climate and Rising Sea Levels

Drivers/Stressors:

- **Rising Seas**
- Increasing Temperature
- Change in rainfall patterns
- Changes in frequency and strength of hurricanes

Rural Syste Impacts

fwmd.gov

South Florida Water Management Model

- Integrated surface water groundwater model
- Regional-scale 2 mi x 2mi grid, daily time step
- Major components of hydrologic cycle
- Overland and groundwater flow, seepage
- Operations of C&SF system
- Water shortage policies
- Agricultural demands simulated
- Provides input and boundary conditions for other models

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Stationarity is Dead-Nonstionarity is deeply uncertain

Climate Projection Uncertainties

Natural Variability (Teleconnections)

Using Climate Change Information

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Climate Scenarios: Representative Concentration Pathways (RCPs)

GCM Skills in Florida

Downscaling CMIP3 & CMIP5 GCM Climate Projections

- Statistical Downscaling (~12 km)
 - BCSD (Bias-Corrected, Spatially-Downscaled)
 - BCCA (Bias-Corrected, Constructed Analogs)
 - SOM method: Penn State (FIU-WCS project)
 - LOCA (not analyzed yet)(apparently better for extremes!)
- Dynamical Downscaling (using Regional Climate Models)
 - NARCCAP (from NCAR) (~50km)
 - FSU Regional Spectral Model (~10km)
 - WCRP CORDEX (not analyzed yet)

Initial Vulnerability Assessments

Environmental Management DOI 10.1007/s00267-014-0315-x

Climate Sensitivity Runs and Regional Hydrologic Modeling for Predicting the Response of the Greater Florida Everglades Ecosystem to Climate Change

Jayantha Obeysekera · Jenifer Barnes · Martha Nungesser

Belle Glade

[%]Change in Mean Annual Precip.

RCP85 : Division-5

Spatial Trends in Florida (Temperature)

CMIP5 RCP85 - [2025-2055 versus 1970-2000]

CMIP3

A2 Scenario

CMIP5

Spatial Trends in Florida (cont.) – Rainfall

CMIP5 RCP85 - [2025-2055 versus 1970-2000]

CMIP3

CMIP5

Sensitivity Investigations: Scenario Assumptions for 2060

Variable	Global Models	Statistically Downscaled Data	Dynamically Downscaled Data
Average Temperature	1 to 1.5°C	1 to 2°C	1.8 to 2.1°C
Precipitation	-10% to +10%	-5% to +5%	-3 to 2 inches
Sea Level Rise	1.5 feet		

Climate Sensitivity Runs and Regional Hydrologic Modeling for Predicting the Response of the Greater Florida Everglades Ecosystem to Climate Change

Jayantha Obeysekera · Jenifer Barnes · Martha Nungesser

Modeling Scenarios (using 2x2)

- 2010 Baseline (demands and landuse corresponding to 2010 simulated with the 1965-2005 rainfall & ET (BASE)
- 2010 Baseline with 10% decrease in rainfall (decRF)
- 2010 Baseline with 10% increase in rainfall (incRF)
- 2010 Baseline with 1.5° Celsius increase and 1.5 foot sea level rise with increased coastal canal levels (incET)
- 2010 Baseline with 10% decrease in rainfall, 1.5° Celsius increase and 1.5 foot sea level rise with increased coastal canal levels (decRFincET)
- 2010 Baseline with 10% decrease in rainfall, 1.5° Celsius increase and 1.5 foot sea level rise with <u>no increased coastal canal levels</u> (decRFincETnoC)
- 2010 Baseline with 10% increase in rainfall, 1.5° Celsius increase and 1.5 foot sea level rise with increased coastal canal levels (incRFincET)

DecRFincET versus IncRFincET

abumal.ong

Global, Regional, and Local Sea Level Projections

sfwmd.gov

Sources of Global and Regional Sea Level Change

Scenario approach (NOAA, 2012) for 3rd National Climate Assessment

0.5

0.0

2000

2020

2040

2060

2080

05 USACE, Int

0.2

2100

NOAA. Int.low

NOAA-low

USACE-low

Confidence (>90%) was assigned to the range as bounding possible futures, with no likelihoods assigned to individual scenarios.

Unified SLR Projections (Climate Compact)

Regional Sea Level Projections

Both Hall et al. (DoD 2016) and Sweet et al. (NOAA 2017) accounted for all components

Florida

SLR Dimensions in south Florida

Regional Water Control System

Regional Coastal Water Control Structures

1000

Effect of rising water table

Acceleration of Saltwater Intrusion

Adaptation Portfolio

Questions?

stand.oou

Concept of NONSTATIONARITY

Jose D. Salas, M.ASCE¹; and Jayantha Obeysekera, M.ASCE²

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Flood Risk Management in Miami-Dade County (with Deltares) : C-7 basin

Adaptation Options:

- M1:Local Flood Mitigation (flood walls, pumps)
- M2:Regional Flood Mitigation (Forward pumping at outlet)
- M3:Land-use mitigation (elevate buildings, roads)

KEY Research papers

Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events

Jose D. Salas, M.ASCE¹; and Jayantha Obeysekera, M.ASCE²

Quantifying the Uncertainty of Design Floods under Nonstationary Conditions

Jayantha Obeysekera, M.ASCE¹; and Jose D. Salas, M.ASCE²

J. Hydrol. Eng. 2014.19:1438-1446.

Frequency of Recurrent Extremes under Nonstationarity

Jayantha Obeysekera, M.ASCE¹; and Jose D. Salas, M.ASCE² (paper published online: J. Hydrologic Engineering)

Techniques for assessing water infrastructure for nonstationary extreme events: a review

J.D. Salas^a, J. Obeysekera^b, and R.M. Vogel^c (paper in review)

NOAA (Sweet et al. 2017) for 4th National Climate Assessment

- Kopp et al. (2014)
- Bayesian Probabilities
- Expert elicitation to get the tails
- DeConto & Pollard
 (2016): Antarctica can
 contribute more, hence
 2.5 m scenario

NOCAR National Oceanic and J U.S. DEPARTMENT OF COMMERCE National Ocean Service Center for Operational Oceanographic Proc

NOAA Global Mean Sea Level (GMSL) Scenarios for 2100

